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ABSTRACT As cyberattacks become increasingly prevalent globally, there is a need to identify trends in 

these cyberattacks and take suitable countermeasures quickly. The darknet, an unused IP address space, 

is relatively conducive to observing and analyzing indiscriminate cyberattacks because of the absence of 

legitimate communication. Indiscriminate scanning activities by malware to spread their infections often 

show similar spatiotemporal patterns, and such trends are also observed on the darknet. To address the 

problem of early detection of malware activities, we focus on anomalous synchronization of spatiotemporal 

patterns observed in darknet traffic data. Our previous studies proposed algorithms that automatically 

estimate and detect anomalous spatiotemporal patterns of darknet traffic in real time by employing three 

independent machine learning methods. In this study, we integrated the previously proposed methods into a 

single framework, which we refer to as Dark-TRACER, and conducted quantitative experiments to evaluate 

its ability to detect these malware activities. We used darknet traffic data from October 2018 to October 

2020 observed in our large-scale darknet sensors (up to /17 subnet scales). The results demonstrate that the 

weaknesses of the methods complement each other, and the proposed framework achieves an overall 100% 

recall rate. In addition, Dark-TRACER detects the average of malware activities 153.6 days earlier than when 

those malware activities are revealed to the public by reputable third-party security research organizations. 

Finally, we evaluated the cost of human analysis to implement the proposed system and demonstrated that 

two analysts can perform the daily operations necessary to operate the framework in approximately 7.3 h. 

 

INDEX TERMS Anomalous synchronization estimation, darknet, malware activity, spatiotemporal pattern. 

 

 

I. INTRODUCTION 

In recent years, an increasingly large number of indiscrim- 

inate cyberattacks have been observed on the Internet, and 

it is therefore becoming increasingly costly to analyze these 

attacks. To maintain security of the Internet, it is necessary 

to quickly recognize global cyberattack trends, specify their 

causes, devise countermeasures, and alert the world of the 

details of the threat. For this purpose, it is important to 

detect the indiscriminate scanning attack activities caused by 

 

 

malware at an early stage before a particular attack becomes 

a pandemic. 

However, it is challenging to identify malware scanning 

attacks among the massive amount of benign traffic in regular 

networks. Therefore, we adopted unused IP address spaces 

(darknets). The term ‘‘darknet’’ refers to observation net- 

works, also known as ‘‘network telescopes,’’ and should not 

be confused with anonymous communication networks such 

as Tor. In the darknet, legitimate communication (noise) 

does not occur; therefore, indiscriminate scanning commu- 

nication (signal) is observed more noticeably. Thus, the 

signal-to-noise ratio is high. This makes it an effective way 

to identify trends and tendencies in global cyberattacks. 

http://www.ijise.net/


ISSN: 1934--9955 www.ijise.net 

Vol-20 Issue-01 Mar 2025 

 

 

 

 

  

Page | 495   

 

 

However, the volume of traffic observed in the 

darknet is increasing each year exponentially. 

Moreover, there are many communications whose 

intentions are unknown, as only the initial 

communications are observed. For example, in a 

darknet, we observe numerous independent 

cyberattacks occurring simultaneously, as well as 

many communications that are unrelated to attacks, 

such as scanning activities that are conducted for 

benign investigation purposes, communica- tions with 

unknown causes, and misconfigured communica- 

tions. As a research target, we should distinguish such 

noisy communications from malicious attack 

communications in detail. 

Devices infected with similar malware, that is, ones 

which share scanning modules, tend to scan in a 

similar spa- tiotemporal pattern to compromise new 

infection targets [1]. Such a tendency is also observed 

on the darknet [2]. Here, the distributions of source 

hosts and destination ports for packets observed in a 

certain period are referred to as spatial features. The 

features observed in the temporal variation of these 

spatial features are thus referred to as spatiotemporal 

patterns. The hosts and destination ports that send 

packets with similar spatiotemporal patterns are then 

referred to as being synchronized. Even in case of 

small-scale infection activity of malware, a high degree 

of synchronicity is expected to occur in the associated 

spatiotemporal patterns, and early detection of 

malware activity can be realized by estimating the 

synchronicity and detecting anomalies. 

In our previous studies, we focused on such syn- 

chronization and attempted to detect potential 

malware activities by estimating the group of 

source hosts with high synchronization in their 

spatiotemporal patterns on a large-scale darknet. We 

adopted the following three different machine learning 

methods in this study: Graphical Lasso [3], 

nonnegative matrix factorization (NMF) [4], and 

nonnegative Tucker decomposition (NTD) [5] to esti- 

mate the synchronization of spatiotemporal patterns 

from packet counts by spatial feature per unit time in 

darknet traffic data. The Graphical Lasso algorithm 

can sparsely estimate conditionally independent 

variable pairs that are not synchronous from a 

covariance matrix. The NMF and NTD algorithms can 

decompose synchronous latent frequent patterns from 

data matrices or tensors into superpositions of multiple 

groups. We previously proposed the following different 

methods to estimate the synchronization in real time to 

automatically use the aforementioned algorithms and 

detect the source host space groups that show abnormal 

synchronization: Dark-GLASSO [6], [7], Dark-NMF [8], 

and 
Dark-NTD [9]. 

In our previous studies, we confirmed that each 

method is capable of detecting malware activities well. 

However, we did not comparatively evaluate the 

methods and examine their early malware activity 

detection performance. In this study, we first 

modularized the three previously proposed methods and 

integrated common components such as feature extrac- 

tion and alert issuing into a single framework. We refer to 

this integrated framework Dark-TRACER. As the main 

challenge, 

we conducted two experiments on Dark-TRACER—

one is to evaluate the quantitative detection 

performance, and the other is to evaluate the 

feasibility of early detection. In the first experiment, to 

quantitatively evaluate the detection performance of 

malware activity, we used the ground truth of reliable 

malware activity in October 2018, which was man- 

ually created, and performed parameter tuning to 

minimize false negatives and false positives in each 

module. Although we have previously presented the 

evaluation results of a conventional method 

ChangeFinder [10] and the proposed modules Dark-

GLASSO and Dark-NMF, we evaluate Dark- NTD for 

the first time using the same criteria. In the second 

experiment, we manually generated a new ground 

truth of events (from June 2019 to October 2020) that 

clearly shows the time of infection spread of malware 

activities and used it to evaluate the feasibility of the 

proposed framework for early detection. 

As a result, Dark-GLASSO, Dark-NMF, and Dark-

NTD achieved 97.1%, 100%, and 97.1% recall, 

respectively. We also identified the pros and cons of 

each module and found that the integration of all the 

proposed modules into a single framework, Dark-

TRACER, complemented each individual module’s 

weaknesses. In addition, the results of the early 

detection feasibility evaluation show that Dark- 

TRACER can detect threats 153.6 days earlier than 

when the threats were revealed to the public by 
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reputable third-party security research organizations. 

We also assessed the human analysis cost and found 

that daily operation with two analysts could be 

performed in an average of 7.3 h, assuming that one 

analyst requires 15 min of analysis time per port. 

In summary, this study afforded the following 

contributions: 
• We integrated our three prior methods (modules) 

into 

a single framework, Dark-TRACER. To the best 

of our knowledge, our approach is the first 

method that focuses on the synchronization of 

spatiotemporal patterns of the darknet traffic. 

Dark-TRACER can detect malware activities 

that show anomalous synchronization. 

• This work is also the most advanced practical 

study that quantitatively evaluated the detection 
performance of malware activities and the 

feasibility of early detection. 

• We found that Dark-TRACER complements the 

weak- nesses of each module, and achieves a 

100% recall rate. In addition, the results 

demonstrate that Dark- TRACER detects threats 

on average 153.6 days earlier than when the 

threats are revealed to the public. We also 

demonstrated that two analysts can conduct the 

necessary daily operations of the framework in 

approximately 7.3 h. 

Currently, Dark-TRACER is being implemented 

in real- world contexts for actual operation. It is 

expected to provide information on detected global 

malware activities to orga- nizations such as the 

Computer Security Incident Response Team 

(CSIRT) and the Security Operation Center (SOC), 

and to assist in their ability to implement prompt 

countermeasures such as investigating the causes and 

conducting detailed analysis. 
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FIGURE 1. Illustration of the framework of Dark-TRACER. 

 

The remainder of the paper is organized as follows. The 

proposed framework, Dark-TRACER, and its three modules 

are presented in Section II. In Section III, we present the 

methodology and results from the parameter tuning and quan- 

titative evaluation experiments on the detection performance 

of malware activities for each module. Section IV describes 

the feasibility evaluation of the proposed method for the early 

detection of malware activities. In Section V, we discuss 

the advantages of Dark-TRACER through a comprehensive 

comparison of each proposed module, consideration of the 

likely adversarial attacks, ways to reduce false-positive alerts, 

and practical operation methods. Section VI provides a 

summary of related work on darknet measurement analysis, 

malware activity detection, and investigative scanners, and 

we conclude the paper in Section VII. 

 

 
II. PROPOSED FRAMEWORK 

The overall framework of Dark-TRACER is shown in Fig. 1. 

Three algorithms, Graphical Lasso [3], NMF [4], and 

NTD [5], are used to estimate the synchronicity of spatiotem- 

poral features, and the modules which incorporate these 

algorithms are referred to as Dark-GLASSO [6], [7], Dark- 

NMF [8], and Dark-NTD [9], respectively, to distinguish 

them. 

The following advantages over existing malware activity 

detection methods can be achieved by focusing on syn- 

chronicity: 1) We can reduce the effect of benign noise 

communication in the darknet traffic and highlight the 

malicious communication. 2) In addition, malware activities 

that are difficult to trace by conventional manual operations, 

such as threats that are small-scale, orchestrated, or have no 

visible explicit spikes, can be captured before the malware 

infection becomes widespread by detecting anomalously 

synchronized spatial features. 3) Finally, if a malware activity 

is found to be synchronized with other malware activities at a 

time when the scale of infection is small (i.e., before it spreads 

in earnest), it can be detected at that early stage. 

The pseudocode of Dark-TRACER framework is presented 

in Algorithm 1. The parameters are described in this 

section and Section III-C. For more specific details of 

the three algorithms employed in this study, the original 

paper reporting on each algorithm [3]–[5] or our previous 

works [6]–[9] may be referred to. Based on Fig. 1 and 

Algorithm 1, the modules are described in greater detail in 

Algorithm 1. 

 

A. DATA OBSERVATION 

Dark-TRACER targets darknet traffic data for analysis. 

As mentioned previously, the darknet has the advantage of 

a high signal-to-noise ratio, because regular communica- 

tion (noise) is not typically observed there, and indiscriminate 

scanning communication (signal) is monitored in abundance. 

However, not all communications that are observed in the 

darknet are malicious communications caused by malware. 

Among the totality of communications observed in the 

darknet, some communications are not related to attacks, 

such as scanning activities for investigation purposes, such as 

Shodan and Censys [11],1 unexplained communications, 

and misconfigured communications. Dark-TRACER is a 

framework that detects intrinsic attacks and malware activi- 

ties by ignoring and eliminating such noisy communications. 

We have implemented a large-scale darknet observation 

system, the NICTER project,2 which aims to understand 

global trends in indiscriminate cyberattacks. Darknet obser- 

vation systems (sensors) have been installed in several 

countries and organizations, and approximately 300,000 

IP addresses are currently being monitored. The observed 

data of these darknet sensors differ slightly depending 
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Algorithm 1 The Framework of Dark-TRACER 
 

 

Require: Common: T , M, t, sensor // Dark-GLASSO: γ, λ, K, θ // 

Dark-NMF: r, α, β, f // Dark-NTD: R˜ n, Rn, epochs, th 
Ensure: Alerts 

1: while Every t seconds in darknet sensor do 
/* Data Observation (Section II-A) */ 

2: Darknet traffic data for T s is newly updated, then preprocess it. 

/* Spatiotemporal Feature Extraction (Section II-B) */ 
3: Generate Vh ∈ N

M ×Nh , Vp ∈ N
M ×Np 

, Vhp ∈ N
M ×Nh×Np 

C. APPLYING ALGORITHMS 

This section briefly introduces the main characteristics of 

the sparse structure learning algorithm Graphical Lasso [3] 

and the two tensor decomposition algorithms, Nonnegative 

Matrix Factorization (NMF) [4] and Nonnegative Tucker 

Decomposition (NTD) [5]. In addition to the above algo- 

rithms, Dark-TRACER can be applied with other methods 

to estimate the synchronization of spatiotemporal features, 
0 0 0 

/* Algorithms and Anomaly Detection (Section II-C, II-D) */ 
/** Dark-GLASSO **/ 

4: if Nh > γ then Vh ← random_sampling(Vh), Nh ← γ end if 
5: Precision matrix Σ−1 ∈ RNh×Nh ← graphical_lasso(Vh, λ) 

but an anomaly detection method that is appropriate for the 

method must be considered. 

 
1) GRAPHICAL LASSO 

6: d λ 
( −1) 

λ ∈ R ← graph_density Σλ 
7: outliers1 ← anomaly_detection(dλ, K, θ ) in Dark-GLASSO 

/** Dark-NMF **/ 

8: W ∈ RM ×r , H ∈ Rr ×N ← NMF(Vh or Vp, r) 

9: outliers2 ← anomaly_detection(W, α, β, f ) in Dark-NMF 

/** Dark-NTD **/ 
10: outliers3 ← NULL 
11: for epochs do 

12: G, A(1), A(2), A(3) ← LRA-NTD(Vhp, R˜ n, Rn) 

The Graphical Lasso (package name: glasso3) algorithm is 

a sparse structure learning method that can calculate the 

‘‘intrinsic relationships’’, rather than spurious correlations, 

between variables. Here, ‘‘no intrinsic relationship’’ between 

two variables is equivalent to the conditional independence 

of the two variables given the other variables. In a Gaussian 

graphical model, which is a structural learning model that 

assumes a multivariate Gaussian distribution, the above 
13: outliers3 (2) ← outliers3| problem can be considered as the problem of estimating 

anomaly_detection(G, A 

14: end for 

/* Issuing Alerts (Section II-E) */ 

, A(3),th) in Dark-NTD a precision matrix (i.e., an inverse covariance matrix). 

Graphical Lasso uses maximum likelihood estimation with 

a 41 regularization term to obtain a sparse precision matrix, 
15: outliers ← outliers1| outliers2| outliers3 

16: Alerts ← issuing_alerts(outliers) 
17: end while 

 
 

 

 

on their geographical location and the scale of observa- 

tion. For this reason, Dark-TRACER analyzes each sensor 

separately. 

Next, as a data preprocessing step, Dark-TRACER analyzes 

only TCP-SYN packets because TCP packets other than TCP- 

SYN that reach the darknet are not considered to be attack 

scans. In addition, the upper 16 bits of the IP address are 

adopted as the unit of the source host. This means that 

hosts are aggregated on a regional or organizational level. 

Finally, to highlight the observation of unknown malware 

activities, we excluded well-known and frequently observed 

threat ports. 

 

B. SPATIOTEMPORAL FEATURE EXTRACTION 

First, we prepared darknet traffic data for a certain period 

(T seconds). We assumed that Nh unique numbers of source 

hosts and Np unique numbers of destination ports were 

observed in the darknet traffic data. Then, at a sampling 

interval of T/M seconds, the number of packets was counted 

for each source host or destination port, and these are 

referred to as the spatial feature variables. Here, M is a 

hyperparameter. From the above, three types of tensors 

representing spatiotemporal features were generated from 
the observed data: Vh  ∈  NM×Nh , Vp  ∈  N

M ×Np 
, and 

thereby introducing sparsity into the relationship between 

variables. 

The obtained precision matrix can be represented as an 

undirected graph, as shown in the Graphical Lasso section 

of Fig. 1. The node set represents the set of variables, 

and the edge set represents the ‘‘presence or absence of a 

relationship’’ between the variables. In other words, when 

there is no relationship between variables, no edges are 

drawn between the nodes corresponding to those variables. 

Alternatively, if there is a relationship, an edge is drawn. 

Graphical Lasso has often been applied to the field of 

anomaly detection. Graphical Lasso has been applied to 

a wide range of real-world problems, such as outlier 

detection [12], [13] based on the relationship of the candidate 

outlier with the other variables, such as in Dark-GLASSO, and 

for detecting changes in a graph structure [14], [15]. 

 

a: DARK-GLASSO MODULE 

Dark-GLASSO uses Graphical Lasso to estimate and graph 

the intrinsic relationship between spatial feature variables 

from a spatiotemporal feature matrix (Vh or Vp). This can 

be interpreted as a representation of the synchronization 

between the variables. 

 
2) TENSOR DECOMPOSITION 

Tensor decomposition is a method of decomposing latent 

frequent patterns from a matrix or tensor into a super- 

position of multiple groups. Several models have been 
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M ×Nh×Np 
0 0 proposed depending on the rank of the tensor and the 

Vhp ∈ N0 (N0 = {0, 1, 2, · · · }). This feature 

extraction was processed in real time and sequentially every 

t seconds. 

decomposition method. Tensor decomposition has been 

3https://cran.r-project.org/web/packages/glasso/ 
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applied in a variety of fields, such as recommendation systems in 

the marketing domain [16], feature extraction in 

electroencephalograms [17], image classification [18], and 

foreground filtering and activity detection in videos [19]. 

The tensor data generated in Section II-B does not accept 

negative values. To make the decomposition results realistic and 

interpretable, we employed the tensor decomposition methods 

NMF and NTD with non-negative constraints. NMF is a 

decomposition method for rank-2 tensors (matrices), 

which multiplies the tensor by the matrix in mode i. The factor matrix 

A(n) can be regarded as an extracted feature for mode 

n. The tensor G is referred to as a core tensor and represents the 

weights of the basis vectors of each mode and the strength of the 

relationship. In addition, R1, R2, R3 are the ranks, which determine 

how many basis vectors are extracted for each mode and can be 

interpreted as the number of frequent patterns. 

The NTD algorithm minimizes the error function ||V − 

whereas NTD is a decomposition method for rank-D tensors (in this case, D = 3). NTD can be regarded as an extension G ×1 A(1) ×2 A(2) ×3 

A(3)||2 

(Frobenius norm). The 

G and A(n). 

of NMF to higher dimensions. Next, the application process of the 

method is briefly explained for each module. 

 

a: DARK-NMF MODULE 

As shown in the NMF part of Fig. 1, NMF is a method of 

approximate decomposition of a non-negative matrix 

optimization is performed by alternately updating 
However, when the tensor to be decomposed, V, becomes large, 

the decomposition becomes practically impossible because a 

massive amount of memory and computation is required to 

perform the exact calculation. To address this problem, Dark-

NTD utilizes the fiber sampling ten- sor decomposition 

(FSTD) [20] to perform a low-rank 

V  ∈ NM ×N into a product of two non-negative factor approximation of the tensor V in advance. Based on the 
0 

matrices W ∈ R M 

×r 

, H  ∈ R r 

×N 

(V  ≈ WH ). Here, results of this low-rank approximation, LRA-NTD [21], which 

r is the number of basis vectors, and refers to the number of 

patterns to be decomposed (r  <  N, M ). The NMF 
minimizes the error function ||V − WH ||2 (s.t. W ≥ 

efficiently approximates NTD, is applied to save memory and 

accelerate the decomposition process without reducing its 

precision. For details of this acceleration, please refer to 

0, H ≥ 
F 

0) (Frobenius norm). Although several approximate Kanehara et al.’s previous paper on Dark-NTD [9]. 

decomposition algorithms have been proposed for NMF, we 

employed the most well-known multiplicative update algorithm 

proposed by Lee et al. [4]. In this algorithm, the initial values of 

W, H are given, and the optimization is performed by 

alternately updating W, H until the error function is 

minimized. In Dark-NMF, the values of the singular value 

decomposition were taken as the initial values. In summary, Dark-

NMF approximately decomposes a spatiotemporal feature 

matrix (Vh or Vp) into two factor matrices W, H using NMF. 

The decomposed matrices contain the same number of 

potentially synchronous groups of spatiotemporal feature 

variables as the number of bases. 

Each component of the two decomposed matrices W, H can be 

interpreted as follows: 

W : Temporal features. Each basis vector represents a 

temporal traffic pattern of a different type. 

H : Spatial features of the source host or destination port. 

The source hosts or the destination port numbers 

corresponding to the indices of each basis vector are 

presumed to have synchronous communication. 

 

b: DARK-NTD MODULE 

As shown in the NTD part of Fig. 1, NTD decomposes a rank- D 

tensor into one small tensor and several matrices. Dark- NTD 

works with rank-3 tensors and decomposes them each 

into one small tensor G and three matrices A(1), A(2), A(3). The 

tensor V ∈ RI1×I2×I3 can be decomposed using the 

decomposition equation as V ≈ G ×1 A(1) ×2 A(2) ×3 A(3). Here, 

A(n) ∈ RIn×Rn (n ∈ {1, 2, 3}), G ∈ RR1×···×R3 , the scalars 

I1, I2, I3 denote the length of each axis (mode), and the symbol ×i 
denotes the product in the mode-i direction, 

In summary, Dark-NTD utilizes the accelerated NTD algo- 

rithm to decompose the rank-3 spatiotemporal feature tensor Vhp 

into a core tensor G and three matrices A(1), A(2), A(3). The results 

of the approximate decomposition contain the same number of 

potentially synchronous groups of spatiotemporal feature variables 

as the number of bases in each matrix. Each component of this 

decomposition result can be interpreted as follows: 

A(1): Temporal features. Each basis vector represents a 

temporal traffic pattern of a different type. 

A(2): Source host spatial features. The source hosts 

corresponding to the indices of each basis vector are 

assumed to be synchronized and in the same group. 

A(3): Destination port spatial features. The port numbers 

corresponding to the indices of each basis vector are 

assumed to be received from the same group. 

 

D. ANOMALY DETECTION 

In this section, we present a method for detecting anomalies in 

spatial feature variables based on the application results of each 

algorithm, module by module. 

 

1) ANOMALY DETECTION IN DARK-GLASSO 

From a graph of the calculated precision matrix, the degree of 
synchronization between the variables is quantified by the graph 

density |E|/N (N − 1). Here, |E| is the number of elements in 

the edge set, and N is the number of spatial feature variables. The 
closer the graph density is to 1, the 

more strongly all variables are related to each other. Graph density 

is also referred to as its sparsity. The graph density value is 

calculated from observation data every T seconds in a continuous 

period and is recorded sequentially. Outlier 
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detection is performed when time-series data of the graph 

density value are collected for a period of fixed window size 

(K ). First, two variances are calculated: one when the largest 

element in the time-series data is excluded and the other 

when it is not excluded. If the ratio of the two variances 

exceeds a threshold θ , it is considered an outlier and is 

deleted from the time-series data. The outliers are identified 

successively by the next largest element until they no longer 

exceed the threshold θ . If there are no outliers and the data 

size exceeds the fixed window size (K ), the oldest data are 

deleted in chronological order. From the above, it is possible 

to determine the periods which have anomalous graph density 

values as compared to the other periods. 

2) ANOMALY DETECTION IN DARK-NMF 

Because the scales of the matrices W, H are not unique, 

we first normalize them. To ensure that the sum of each 

column of W is aligned to 1, we normalize W, H as W = 

WΛ, H  = Λ−1H using a diagonal matrix Λ ∈ Rr×r , 
whose diagonal component is an inverse of the sum of each 

column. The elements of the normalized H are scaled to 

actual observed packet counts. Spatial features with values 

of H less than 1 are considered inactive features in the 

corresponding basis vector. For such active spatial features, 

if there are more than β features that exceed α (%) of the 

maximum value of elements (maximum number of packets), 

active spatial features are judged as anomalies. In addition, 

when judging anomalous spatial features, a parameter f ∈ 

{0, 1} is utilized to determine whether to treat all active spatial 
features or only those that are more anomalous. From the 

above, we can determine the anomalous spatial features of 

a specific period. 

3) ANOMALY DETECTION IN DARK-NTD 

If there are two or more host spatial features that exceed the 

threshold value for A(2), the group of hosts is considered 

to have synchronized activities and its IP addresses are 

recorded. In addition, G and A(3) are utilized to identify the 

destination port features through which this group of hosts 

communicated. From G, we identify a port group of A(3) that 

is linked to a group of hosts that have been determined to 

have synchronous activity from A(2). In the identified port 

group, the destination port features that exceed the threshold 

are determined to be the targeted ports in the synchronized 

host group of A(2). We can determine the anomalous host 

groups and their targeted ports in a specific period. 

E. ISSUING ALERTS 

The final process collects information that has been deter- 

mined to be anomalous from each module and outputs an 

alert in a uniform format. For Dark-GLASSO, we used 

the entire darknet traffic data for a period that has been 

identified as anomalous. For Dark-NMF, we used the data for 

the spatial features identified as anomalous. If numerous 

source hosts sent many packets to a specific destination port, 

we aggregated the information regarding the time, destination 
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port numbers, and source hosts and issued an alert. 

Finally, Drak-NTD issued an alert directly using the 

anomalous host group, targeted port, and time 

information found in the anomaly detection step. 

 
III. EVALUATING QUANTITATIVE COMPARISON 

OF DETECTION PERFORMANCE 

We evaluated the performance of each proposed module and 

describe the results of two different experiments to 

demon- strate the relationships between modules and 

their practical- ity. In the first experiment in this section, 

we quantitatively evaluated the ability of each module to 

accurately detect malware activities. In Section IV, the 

second experiment evaluated the feasibility of the early 

detection of malware activities. Darknet traffic was 

preprocessed using tcpdump and passed to Dark-

TRACER, implemented in the R language. All experiments 

were conducted in a unified manner in Japan Standard 

Time, with CPUs running on AMD RYZEN TR 2990WX 

and 128GB memory. 

In this experiment, we manually gathered TCP ports 

for which malware activities were clearly observed in 

October 2018 and generated the ground truth for a total 

of 35 TCP ports. This ground truth evaluation aimed to 

determine a hyperparameter set that minimized the 

number of false negatives, even if there were some false 

positives in each module, and evaluated the detection 

accuracy at that time. The conventional method, 

ChangeFinder, and the proposed modules, Dark-

GLASSO and Dark-NMF, have already been tested and 

the results of those evaluations have been published [7], 

[8], whereas Dark-NTD was now evaluated for the first 

time using the same criteria. The following subsection 

describes the details of the dataset, the parameter tuning 

of Dark-NTD, and the comparison results from each 

module. 

 

A. DETAILS OF DATASET 

The dataset and the ground truth for evaluation were the 

same as those used in the previous reports for Dark-

GLASSO and Dark-NMF and are publicly available.4 

Specifically, we employed data from eight darknet 

sensors A to H, which are located around the world and 

have different observa- tion scales. The observation scale 

of each sensor ranges from approximately 30,000 IP 

addresses (/17 subnet) to approximately 2,000 IP 

addresses (/21 subnet), for a total of approximately 80,000 

IP addresses in the darknet observation network. The 

period of data used in the experiment was in the month of 

October in 2018. The average number of packets per day 

for sensor A, which has the largest observation scale, was 

81.4 M, and the data size was 5,605 MB. To highlight the 

observation of unknown malware activities, the following 

11 known and constantly observed TCP ports were 

excluded during preprocessing: 22, 23, 80, 81, 445, 1433, 

2323, 3389, 

5555, 8080, 52869. 

 
4https://csdataset.nict.go.jp/darknet/ 
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Next, regarding details of the ground truth, Table 1 shows 

the TCP ports where malware activities were monitored 

and the characteristics of the malware activities by threat 

type. The threat types were primarily classified into Internet 

of things (IoT) malware such as Mirai, Hajime, and 

HNS (Hide and Seek), vulnerabilities related to router 

manufacturers, and vulnerabilities related to other off-the- 

shelf service protocols. 

As a fingerprint, or key identifier, of Mirai, it is 

commonly known that the sequence number matches the 

destination IP address in the SYN packet [22], [23]. 

A fingerprint of Hajime is that its window size is fixed at 

14600, and an upper or lower 1 byte of the sequence number 

is 0. A common feature of router vulnerability types is that 

there are many cases wherein each router manufacturer’s 

login screen was confirmed when an HTTP connection was 

made to the source hosts that sent the scan. Cohen et al. [24] 

also identified that ports 5379, 6379, and 7379 were observed 

during the same period. Please refer to that previous paper for 

more details, including time-series graphs of the unique host 

counts of malware activities in this ground truth. 

 

B. PARAMETER TUNING IN DARK-NTD 

In this section, we describe how to tune the following five 

hyperparameters in the Dark-NTD. 

1) sensor: which darknet sensor is used for the observed 

data 

 

 

 

 

 

 

 
                

                

                

                

                

                

                

 

 

FIGURE 2. Results of true positives (TPs) and false positives (FPs) for 
each threshold (th) when all eight sensors were utilized. (horizontal axis: 
epochs). 

 

2) R˜ n: Number of bases in FSTD, a low-rank approxima- 

tion method for acceleration. 

3) Rn: Number of bases in NTD. 

4) epochs: How many times the calculation for the same 

data is repeated 

5) th: Threshold for alert determination 

The above five hyperparameters are tuned by grid search. 

The search range and interval include our long-term empir- 
ical rules. For the sensor, we compared the performances 
of selecting one of the eight darknet sensors against the use 

of all eight sensors. Next, the larger the number of bases R˜ n in 

FSTD, the better is the low-rank approximation of the original 

tensor. In addition, R˜ n should be set to be larger than Rn, 
the number of bases in NTD. In this grid search, we worked 

within the range of R˜ n ∈ {25, 49, 81, 121} and Rn ∈ {3, 5, 8}. 
Furthermore, because the initial values of FSTD and NTD 

are randomly chosen, the calculation results are not unique. 

Therefore, we need to know how many times the same data 

can be iterated to obtain a stable and sufficient accuracy. 

In this tuning experiment, we iterated epochs up to 15 times. 

Finally, for alert determination thresholding th, we worked 

within a fixed range of {0.05, 0.1, 0.2, · · · , 0.9} and an 
adaptive method called ‘‘Otsu’s thresholding method [32],’’ 

which is a commonly used image thresholding algorithm. 

Here we describe the results of the above five parameter 

tuning. It was not practical to tune all five parameters 

simultaneously, because the number of combinations would 

be immense. As an evaluation strategy, we divided the 
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FIGURE 3. Results of true positives (TPs) and false positives (FPs) 
for each sensor when the threshold (th) was Otsu’s thresholding 
method. (horizontal axis: epochs). 

 

 

related to NTD, and sensor, epochs, and th, 

which are not. Because sensor, epochs, and th have 

a more significant impact on detection performance, we 

first roughly tuned the detection accuracy with these 

three parameters 

and then fine-tuned it with R˜ n, Rn. In this experiment, 

the spatiotemporal feature extraction in Section II-B was 

performed by generating and using tensors Vhp for October 

2018 with the observation time unit T set to 1,800 s, the 

sampling interval M set to 30, and the online processing time 

unit t set to 600 s. 

 
1) TUNING EVALUATION OF SENSOR, EPOCHS, AND TH 

We evaluated the tuning of sensor, epochs, and th after 

fixing the values to R˜ n = 25, Rn = 5, which were empirically 
used in an earlier study [9]. The results of the evaluation are 
presented in Figs. 2 and 3. The horizontal axis represents 

the number of epochs, and the vertical axis represents the 

number of true positives (TPs) and false positives (FPs) of 

the port numbers. When the number of TPs is close to 35 and 

parameters into two groups: R˜ n, Rn, which is directly the number of FPs is low, we can observe that the detection 
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TABLE 1. Characteristics of malware activities observed on our darknets in October 2018. Malware activities with similar characteristics are grouped 
according to TCP ports. 

 
    

 

 

 

 
  

 

 

 

 
 

  
 

 
 

 
  

 
 

 

 

   

 

 

 

   
 

  

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 

TABLE 2. Tuning evaluation results of R˜n, Rn in Dark-NTD. 

 

 

 

 

 

 

 
 

 

 

  

 

  

  

  

 
 
 

 
 

 
 

 
 

 
FIGURE 4. Dispersion results of the number of TPs (red) and FPs (blue) 

for each epoch over 15 iterations. Error bars represent standard 
deviations. The upper graph shows the results for each th when sensor 
A is set, and the lower graph shows the results for each sensor when th 

is Otsu’s thresholding method. 

 
 

 

accuracy is excellent. Fig. 2 shows the results for each th when all eight 

sensors are utilized. This indicates that th results in more TPs with fewer 

epochs while keeping the number of FPs relatively low when using Otsu’s 

thresholding method (otsu) as compared with any other fixed value. Next, 

Fig. 3 shows the results for each sensor when the th used is Otsu’s 

thresholding method. The results demonstrate that when using only the 
sensor A, the same number of TPs is achieved with fewer epochs while 

keeping the number of FPs lower than when using either all sensors in 

combination, or other sensor alone. Based on the above, we conclude that 
the best solution is to use only A for sensor, 4 for epochs, and Otsu’s 

thresholding method for th. 

Next, we provide a brief discussion regarding each parameter. Fig. 4 

shows the dispersion of TPs and #FPs 

for each epoch over 15 iterations. The red graph is the mean number of 

TPs, the blue graph is the mean number of FPs, and the error bars 

represent the standard deviations. From these results, we can conclude 

that the randomness of the initial value selection of FSTD and NTD does 

not dramatically affect the detection performance because a similar number 

of TPs and #FPs was recorded each time. In terms of the sensor, Dark-

NTD recorded a good number of TPs for sensors with a large observation 

scale. Finally, Otsu’s thresholding method achieves a similar level of 

accuracy to a fixed value of 0.3 but has the advantage of adaptively 

determining a threshold value from the data. 

2) TUNING EVALUATION OF R˜ n AND Rn 

In this section, we set sensor, epochs, and th to the values 

determined above, and then evaluated the tuning of R˜ n, Rn. The 

results are shown in Table 2. Contrary 

to expectations, increasing the value of R˜ n decreased the 

number of TPs and increased both the number of FPs and the average 

processing time. This result supports the fact that even at R˜ n = 25, we 

can sample enough important information (fiber) for low-rank 
approximations. Therefore, 

we determined that R˜ n = 25 is appropriate. In the case 

of Rn, there were no significant differences in the average 

processing time for any value, and the greatest number of TPs was achieved 

with Rn = 5, so we conclude that Rn = 5 is most appropriate. 
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ChangeFinder: 

autoregressive order = 2, forgetting parameter = 

0.005, smoothing range (two steps) = {10, 5}, 
threshold for change detection = 3 

Dark-GLASSO: 

T = 600, M = 12, t = 600, used matrix Vh, K = 
432, θ = 0.98, λ = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, 

γ = 1000 
Dark-NMF: 

T = 1800, M =30, t=600, used matrices (Vh, Vp), 

α = 30, β = 2, r = {1, 2, · · · , 10}, f = 0 for 

SET1, f = 1 for SET2 

Dark-NTD: 

T = 1800, M = 30, t = 600, used tensor 

Vhp, sensor=A, R˜ n = 25, Rn = 5, epochs=4, 
th=Otsu’s thresholding 

 

TABLE 3. Comparative evaluation results of detection performance of 
malware activities. Dark-TRACER is the result of integrating Dark-GLASSO, 
Dark-NMF’s SET1, and Dark-NTD’s Tuned. 

 
  

 

  

  

  

   

    

 

 
 

 
 

 

C. COMPARATIVE EVALUATION RESULTS OF DETECTION 

PERFORMANCE 

In this section, we quantitatively compare and evaluate the 

detection accuracy of malware activities among the modules. 

The results are shown in Table 3. ChangeFinder [10] is 

an existing method that was applied in NICTER before 

proposing each module of Dark-TRACER, and it is an 

algorithm for detecting change points in time-series data with 

a low computational cost. The ChangeFinder algorithm is 

based on the sequential discounting autoregressive (SDAR) 

forgetting learning algorithm, which calculates only new 

time series data and reduces the influence of past data by 

improving the autoregressive model to learn sequentially. 

We implemented ChangeFinder on two types of time- 

series data: the number of packets and unique source hosts 

in 10 min. The parameters of each module used in this 

experiment are described below. 
 

Here, λ in Dark-GLASSO is a regularization coefficient for 

Graphical Lasso. Due to the high computational complexity 

of Dark-GLASSO, random sampling was conducted when 

the number of hosts Nh exceeded γ to maintain real-time 

performance. All other parameters are explained in Section II. 

Next, we explain the notation used in Table 3. SETs in 

Dark-NMF indicates the difference between 0 and 1 settings 
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FIGURE 5. The number of unique source hosts per hour on NICTER, 
where Moobot-related malware activities are observed. A 

synchronized fluctuation in the number of hosts was confirmed on 
September 19 and September 21. D: The earliest time detected by 
Dark-TRACER, N: The time observed by NICTER operators, and P: The 

time when was is revealed to the public. 
 

 

 

of f . CONV in Dark-NTD is a parameter setting 

introduced in previous research, and Tuned is the 

parameter setting determined by tuning in the previous 
section. The difference between CONV and Tuned is that 

Tuned has epochs and uses only sensor A. Note 

that only Tuned in Dark-NTD utilizes sensor A, 

whereas the other modules utilize all eight sensors. #FNs 

is the number of false negatives, which is 
#TPs+#FNs = 35. Recall is an evaluation metric 

calculated as #TPs / (#TPs+#FNs). 

Lastly, we describe the symbol [r] attached to SET2r and 

Tunedr. The results of SET2 and Tuned show that the 

number of FPs is very high. The primary cause of 
false 
positives is synchronized scans by investigative scanners, 

such as Shodan and Censys [11]. To address this 

problem, at least temporarily, we attempted to exclude 

alerts from investigative scanners by applying a simple 

rule to the alert results of SET2 and Tuned. The 

simple rule was: if a large number, or a sequential 

number, of TCP ports were seen concurrently from the 

same source hosts in the alerts, those alerts are 

excluded. The application results 

of the rule were SET2r and Tunedr. Dark-NMF has an 

effect of halving the number of FPs while maintaining 
the 
number of TPs, whereas Dark-NTD does not have such 

an effect. 

From the results of a comparative evaluation in Table 

3, Dark-TRACER achieves a recall rate of 100%, although 

there are some FPs, by integrating the results of each 

module. Next, we examine the characteristics of the ports 

that are false negative in each module. ChangeFinder 

tends to perform poorly at detecting small host sizes and 

for short- or long- term constant malware activities. 

Dark-GLASSO and Dark- NMF are perform poorly when 

detecting malware activities with small host sizes. 

Furthermore, SET1 tends to be weak in detecting long-

term persistent activities. Dark-NTD tends to be poor at 

detecting short-term malware activities. Overall, the 

results show that an integration of the three proposed 

modules can mutually complement the weaknesses of each 

module. 

 
IV. FEASIBILITY ASSESSMENT OF EARLY DETECTION 

In this section, we assess the feasibility of the early 

detection of malware activities. The details of the dataset, the 
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TABLE 4. Details of the ground truth to assess the feasibility of early detection of malware activity. It consists of 33 TCP ports and 12 types of threat events 
for malware activities observed in 17 months from June 2019 to October 2020, wherein the time of infection spread is clearly discernible. (RCE: Remote 

Code Execution, C&C: Command and Control, DDoS: Distributed Denial-of-Service, CVE: Common Vulnerabilities and Exposures, PoC: Proof of Concept). 

 
 

 
 

   
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
  

 
 

 
 

 
 

 
 

  
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
  

 
 

 
 

 
 

 
 

  
 

 

 
 

 
 

 

  

 

 

FIGURE 6. The number of unique source hosts per hour on 
NICTER, where Moobot-related malware activities are observed. 
Here, the events that do not fluctuate synchronously with the 
ports in Fig. 5 are shown. D: The earliest time detected by Dark-
TRACER, N: The time observed by NICTER operators, and P: 

The time when it was revealed to the public. 

 

 
experimental setup, and the assessment results are described below. This 

experiment included the general method of cross- 
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FIGURE 7. The number of unique source hosts per hour on 
NICTER where the malware activities were observed 
(December 2019 to March 2020). D: The earliest time 

detected by Dark-TRACER, N: The time observed by 

NICTER operators, and P: The time when it was revealed 

to the public. 

 

 
validation in time series data; after learning the optimal parameters with 

past data in section 3, we verified them with future data in this section. 

 
 

 
 

FIGURE 8. Number of unique source hosts per hour on NICTER, where 
malware activities were observed (March 2020 to August 2020). D: The 

earliest time detected by Dark-TRACER, N: The time observed by NICTER 

operators, and P: The time when it was revealed to the public. 

 

 

A. DETAILS OF THE DATASET AND EXPERIMENTAL SETUP 

In this experiment, we used data from three sensors A (/17 

subnet), B (/18 subnet), and D (/20 subnet), selected by 

observation scale, instead of all eight sensors. The data period 

used in the experiment was 17 months, from June 2019 to 

October 2020. To highlight the observation of unknown 

malware activity, we excluded known and routinely observed 

TCP ports by calculating them for each month at each sensor 

as a preprocessing step. 

Next, we describe the details of the ground truth used 

in the evaluation. In the experiment described in Section 3, 

the ground truth included many stationary threats whose 

infection spread period of malware activities was unclear; 

thus, it was not easy to assess early detection. In this 

experiment, we manually generated a new ground truth for 

malware activities observed from June 2019 to October 2020, 

which represented a set of threats with a clearly identifiable 

infection spread period. The newly prepared ground truth 

was based on reports and blog posts published by NICTER’s 

expert operators.5 Among the malware activities observed by 

NICTER, we selected malware activities whose origin and 

characteristics were clear and for which there were references 

by third parties. As a result, we collected 12 types of threat 

events on 33 TCP ports. The breakdown of the ground truth is 

shown in Table 4. The following information was accurately 

recorded: 
• the initial period when NICTER began to observe a rapid 

increase in the number of packets and hosts on TCP ports 

related to threats 

• the change in the scale of the number of hosts at that time 

• the period in which threats were revealed to the public 

due to references issued by reputable third-party security 
research organizations (i.e., reveal date) 

• characteristics of the threats 
Third-party references included recurring activities, such as 

BlueKeep, ShenZhen TVT, and MikroTik, which are 

attacks on previously known vulnerabilities. 

This ground truth considers not only the type of threat but 

also its variations, such as the observed infected host size and 

the persistence/stationarity of threats. For clarity, hourly time- 

series graphs of the number of unique source hosts observed 

by NICTER are shown in Figures 5, 6, 7, and 8 for each TCP 

5https://blog.nicter.jp/ 
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TABLE 5. The number of early detected ports, late detected ports, 
overlooked ports (#FNs) and their average numbers of days to detection 

based on the initial period of observation by NICTER. 
 

 

TABLE 6. Average number of unique ports by period. 
 

 

 

port. The solid vertical line labeled ‘‘D’’ represents the 

earliest period detected by Dark-TRACER, the dashed 

line labeled ‘‘N’’ represents the period observed by 

NICTER operators, and the dashed line labeled ‘‘P’’ 

represents the period when was is revealed to the public 

by reputable third-party security research organizations. 

Figures 5 and 6 are time-series graphs summarizing 

the partial TCP ports where Moobot-related threats were 

observed. In Fig. 5, port groups with synchronized fluc- 

tuations in the number of unique hosts can be 

confirmed as belonging to one group on September 19 

and one group on September 21, indicating that large-

scale Moobot activity was observed during this period. 

Figure 6 shows events where Moobot features were 

observed but did not show synchronized fluctuations with 

the ports in Fig. 5. These ports are related not only to 

Moobot, but also to the activities of other Mirai 

variants such as Fbot and Estella. As shown above, 

Moobot’s malware activity is an orchestrated threat that 

combines multiple activities. Next, Figs. 7 and 8 show 

time-series graphs of partial TCP ports among threats 

other than Moobot. Of these partial TCP ports, we found 

several threats that were difficult to detect by 

conventional methods or by human efforts, such as 

threats with no spikes, constant threats, and small-scale 

threats. 

 

B. ASSESSMENT RESULTS 

We now describe the processing results for each 

parameter with their best parameters, which were the 

same as in the experimental setup described in Section 

III-C. We also applied the aforementioned simple rule to 

exclude alerts caused by investigative scanners. Here, 

Dark-NMF was computed with the parameter SET1. 

Table 5 shows the number of ports that were detected 

early, late, or falsely negative, and their average number 

of days, based on the initial period of NICTER 

observations. The results show that although there were a 

few overlooked ports (#FNs) and late 
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detected ports when considered by the module, all 33 TCP 

ports could be detected at an early stage when integrated 

with Dark-TRACER. In addition, Dark-TRACER was able 

to detect threats on average 126.4 days earlier than the 

initial period when threats were first observed by NICTER, 

and 153.6 days earlier than the period when threats were 

announced to the public. 

We also investigated how many ports were alerted for 

each module in this experiment. Table 6 shows the average 

number of unique ports per period for each module. For 

the entire 17-month period, Dark-GLASSO, Dark-NMF, 

and Dark-NTD produced alerts for 66, 2,042, and 3,969 

unique ports, respectively. When the proposed modules were 

integrated into Dark-TRACER, the number of unique ports 

was 5,271. We counted the number of unique ports for 

each day, week, and month, and the averages are shown in 

Table 6. For example, Dark-TRACER issued alerts for an 

average of 58.49 ports per day. Assuming that one analyst 

requires 15 min of analysis time per port (refer to Section. V- 

E), two analysts could perform these daily operations in 

approximately 7.3 h (roughly 14.6 h for a single analyst). 

It would require approximately 31.5 h for a week and 89.8 h 

for a month with two analysts. 

From the above two experiments, we found that Dark- 

TRACER could tune the parameters of each module so that 

the number of FNs was almost non-existent and could also 

detect malware activities at a fairly early stage. As a future 

challenge, the cost of analysis would be lower if the number 

of FPs could be reduced more precisely. In addition, there is a 

possibility that expert analysis would disclose other unknown 

activities, in addition to the malware activities that were 

selected for the ground truth. 

 
V. DISCUSSION 

In this section, we provide a comprehensive discussion 

and insight into the performance of our framework. First, 

we demonstrate the advantages of Dark-TRACER and provide 

a comprehensive comparison of each proposed module. Then, 

we discuss the potential concerns of our approach, such as 

adversarial attacks and the reduction of false-positive alerts. 

Finally, we present guidelines for the practical application of 

Dark-TRACER. 

 

A. ADVANTAGES OF DARK-TRACER 

As mentioned in the introduction, by focusing on the 

synchronization of spatiotemporal patterns in darknet traffic, 

we have the following advantages. 

 
1) TRIMMING UNSYNCHRONIZED AND NOISY 

COMMUNICATIONS 

Distinguishing between non-attack-related and attack-related 

communications from darknet traffic is a difficult task. 

Misconfigured or unexplained communications are nuisances 

that interfere with the interpretation of darknet traffic analysis. 

In this paper, we focused on the fact that hosts infected with 

similar malware tend to compromise and scan 
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FIGURE 9. A 3D graph visualizing a case of anomalous 
synchronization of the spatiotemporal patterns detected from the 
experimental results in Section III. A scatter plot of partial Vhp during 

18:30–19:00 on October 31, 
2018, is visualized. Each of the three axes is a time axis in minutes, 
a source-host spatial axis, and a destination-port spatial axis, and 
the plots represent the observed packets (element values in Vhp). 

For the destination-port spatial axis, there are only three points 
at which 
anomalous synchronicity was detected—5379, 6379, and 7379. Host IPs 
are plotted in red if they match on multiple ports within one-minute 
increments and in green if they do not. The red points are considered 
to be synchronized communications caused by factors such as 
malware activities, while the green points are considered to be 
noise communications. 
 

 
 

 

in a synchronized spatiotemporal pattern. By estimating 

the synchronicity of spatiotemporal patterns in the darknet 

traffic and eliminating communications that do not show 

synchro- nization from the scope of analysis, noisy 

communications are expected to be scraped off, and 

malicious communications can be highlighted. 

For understanding, a visualization of the 

synchronization of the spatiotemporal patterns is shown 

in Fig. 9. This is an alert of malware activity detected by 

Dark-NMF at sensor A during 18:30-19:00 on 

October 31, 2018, visualizing Vhp at that time. The 

number of packets is plotted in three dimensions: time, 

source host, and destination port in one- minute 

increments. Figure 9 shows that the number of red dots 

indicates the number of communications from the same 

host to the same destination ports (5379, 6379, 

7379/TCP) during that time period. As indicated in Table 

1, we observed a scanning attack on the same service 

Redis at these ports. Thus, many red dots appear when 

the spatiotemporal pattern has anomalous 

synchronization. In contrast, the green dots can be 

regarded as noisy communication. It is assumed that 

Dark-TRACER detects anomalies by highlighting the red 

dots (e.g., malware activity) while eliminating the green 

dots (noise communication). The red dots (synchronization 

between spatiotemporal features) do not appear as abundantly 

as they appeared in Fig. 9 between arbitrary destination ports 

of ordinary darknet traffic. 
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TABLE 7. A comprehensive comparison of the proposed modules Dark-GLASSO, Dark-NMF, Dark-NTD. 

 
  

  

 

 

 
 

 
 

 

 

 

 
 

 

2) DETECTING MALWARE ACTIVITIES THAT ARE CONVENTIONALLY DIFFICULT TO DETECT 

Traditionally, malware activities have been detected based 

on changes in time-series data, such as the number of packets 

and the number of hosts, using change-point detection 

algorithms such as ChangeFinder, or manually by 

operators. Until recently, many malware activities were 

relatively easy to detect by operators, as they were threats 

that had severe and obvious changes in time-series data, 

threats with clear spikes, or threats that were simple and had 

a large scale of infection. However, in recent years, the 

amount of communication observed in the darknet has 

increased exponentially and cyberattacks have become 

more diverse and sophisticated, such as the Moobot 

described in Section IV-A. Such orchestrated threats, 

which intertwine multiple activities, small-scale threats, 

threats without explicit spikes, and constant threats, are 

malware activities that are difficult to detect manually. 

However, there is a significant possibility that Dark-

TRACER can detect such traditionally hard-to- detect 

malware activities. Its feasibility is well demonstrated by 

the evaluation results of early detection in Section IV, 

wherein various types of malware activities were detected. 

 

3) EARLY DETECTION OF MALWARE ACTIVITIES 

IN REAL-TIME 

Dark-TRACER is not only capable of detecting 

traditionally hard-to-detect threats, but also of detecting 

them early and in real-time. Even when the scale of 

malware activity is small, if there is overlap in the spatial 

features (e.g., the distribution of hosts and ports) with 

another malware activity that has already been detected, 

and if there is synchronicity in the pattern of the number of 

packets, there is a high probability that they will be 

detected together. This implies that Dark- TRACER can 

capture the signs of infection before it spreads in earnest. 

In this way, by checking the overlapping degree of host 

spatial feature variables between alerts from the same 

period, it is possible to identify threats that at first glance 

appear to be different events, but are actually caused by 

the 

same malware. In fact, as shown in Figs. 5 and 6, Dark- 

TRACER can detect orchestrated threats such as 

Moobot, in which multiple activities are intertwined, at 

an early stage by detecting signs of infection as they 

spread, even at a small scale. 

 

B. COMPREHENSIVE COMPARISON OF 

PROPOSED MODULES 

In this section, we comprehensively compare the 

proposed modules Dark-GLASSO, Dark-NMF, Dark-

NTD in terms of accuracy, cost, anomaly detection 

method, and spatial features. An overview is given in 

Table 7, and detailed explanations are provided in order 

from the top of the list. 

 

1) ACCURACY 

First, we discuss the accuracy aspect. In general, 

there was a trade-off between the number of FPs and 

FNs. Dark-GLASSO had almost no FPs and Dark-

NMF, Dark- NTD had almost no FNs. As for the 

performance of early detection, Table 5 shows that 

Dark-GLASSO tended to make detections slightly later, 

but the other modules almost always detected threats 

early. Next, as mentioned in Section III-C, we 

examined the characteristics of each module’s number of 

FNs ports and considered the types of threats that each 

module overlooked. Dark-GLASSO tended to miss 
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small-scale threats, Dark-NMF tended to miss small- 

scale and constant threats, whereas Dark-NTD tended to 

be weak at detecting short-term threats. The same 

tendency was confirmed by the experimental results 

described in Section IV. Because the modules are 

complementary to each other, it is recommended to use 

them in an integrated manner, rather than using only one 

in isolation. Table 5 shows that by integrating the 

modules into Dark-TRACER, we can avoid problems of 

missed or delayed detection. Finally, the accuracies of 

Dark-GLASSO and Dark-NTD were low, unless the 

observation scale of the darknet sensor was large. In 

contrast, Dark-NMF recorded the same level of accuracy 

for all eight sensors of different sizes used in Section III. 

 

2) COST 

Dark-NMF is very computationally inexpensive and does 

not require any particular preprocessing. In contrast, Dark- 

GLASSO and Dark-NTD are computationally expensive and 

require specific preprocessing. Given the spatial feature sizes 

Nh and Np, graphical lasso has a cubic time complexity of 

O(N 3), NTD has a quadratic time complexity of O(Nh · Np), 

and NMF has a linear time complexity of O(Nh) or O(Np). 

In this study, Dark-TRACER was processed online sequen- 

tially at 10-min intervals. Therefore, we adjusted the param- 

eters and preprocessed each module to finish the processing 

within 10 min for one data slot. Dark-NMF did not require 

any preprocessing. Next, as described in Section III-C, Dark- 

GLASSO performs random sampling preprocessing when the 

number of hosts Nh exceeds γ . In a previous paper [7], 

we reported that the output alerts were quite unstable when γ 
was lower than the expected average value of Nh. Dark-NTD, 

as described in Section II-C, applies FSTD [20] to preprocess 

the tensor V to a low-rank approximation and preliminarily 

samples only the essential parts. The larger the number of 

bases R˜ n in FSTD, the better the low-rank approximation of 

the original tensor. However, as shown in Table 2, the results 

of tuning R  ̃n demonstrated that increasing the value of R  ̃n only 
worsened the accuracy. In all experiments, the processing 

time of each module was no longer than 10 min (CPU: AMD 

RYZEN TR 2990WX). For one data slot, Dark-NMF took 

approximately 1 min, Dark-NTD approximately 5 min, and 

Dark-GLASSO approximately 7 min. 

An important factor in the cost of alert analysis is the 

number of ports that must be analyzed per unit period. 

As shown in Table 6, Dark-GLASSO has the lowest cost. 

For Dark-GLASSO, only 66 ports needed to be analyzed 

during the entire experiment in Section IV, whereas the other 

modules required 30 to 60 times more cost. 

 

 

3) ANOMALY DETECTION 

Next, we discuss methodological differences in anomaly 

detection. Dark-NMF and Dark-NTD decompose spatiotem- 

poral features into latent frequent patterns and then perform 

anomaly detection for each group of decomposed spatial 

features. This decomposition can be regarded as a favorable 

condition for detecting local events, but it is also one of the 

reasons why the number of detected anomalous events (alerts) 

becomes very large, although it should be noted that the 

number of alerts can be adjusted by tuning the parameters. In 

contrast, Dark-GLASSO detects anomalies from all spatial 

features without decomposing the spatiotemporal features. 

This is a favorable condition for detecting global events and 

is one of the reasons that the number of anomalous events 

(alerts) detected is small. 

In addition, Dark-GLASSO requires K of the past data to 

perform anomaly detection. Each time we change the value of 

the parameters or introduce a new sensor, Dark-GLASSO has 

to wait for K periods to obtain the detection results. 
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Other modules, however, do not require waiting in such 

cases because they do not require past data. 

 

4) SPATIAL FEATURE 

Finally, we discuss differences in the application of 

spatial features. In Dark-TRACER, two types of spatial 

features can be handled: host space and port space. For 

darknet traffic in a short unit time, the size of the port 

space Np tends to be larger than the size of the host space 

Nh. In Dark-GLASSO, the port spatiotemporal feature 

matrix Vp is not employed because it becomes 

computationally intractable when the size of the spatial 

features becomes large. Dark-NMF can handle not only 

the host spatiotemporal feature matrix Vh but also the port 

spatiotemporal feature matrix Vp due to its low 

computational complexity. Finally, because Dark-NTD is 

designed to handle a three-dimensional spatiotemporal 

feature tensor Vhp from the beginning of the proposal, it 

can calculate the host/port space simultaneously. 

 

C. CONSIDERATIONS FOR ADVERSARIAL ATTACKS 

This section discusses adversarial attacks that an attacker 

might implement to evade detection by Dark-TRACER. 

Possible attempts include multiplying noise, distributing 

spatial features, and reducing the frequency of temporal 

features, which might prevent the malware from 

capturing spatiotemporal features when the framework 

performs scan- ning compromises. 

• The case wherein dummy scans, which are 

unrelated to an attack, are attached to a true attack 

to confuse the detection framework. 

In this case, more data will be observed, and syn- 

chronization of the spatiotemporal features will be 

captured more strongly, resulting in better 

detection of true attacks. However, some of the 

detected events may contain dummy scan 

information, which may be troublesome for analysis. 

• The case wherein multiple true attacks from many 

attack groups are distributed and executed 

simultane- ously. 

The advantage of Dark-NMF and Dark-NTD is that 

they can be decomposed into several patterns with 

similar spatiotemporal features. Therefore, Dark-

TRACER can detect anomalies by dividing potential 

attack groups into several groups, even when 

orchestrated attacks are conducted simultaneously. 

•  

•  

•  

•  

•  

•  

•  

•  

•  

•  

• The case of a slow stealth scan attack. 

Depending on the degree of stealthiness, if a stealth scan 

attack is too slow, the synchronization of the observed 

spatiotemporal features becomes weak, making the 

attack difficult to detect. However, slow stealth scans 

are not efficient for an attacker who wants to spread 

the damage of their malware as quickly as possible, 

because the speed of spreading the malware infection 

is significantly slower. Slow stealth scans are generally 

considered to have purposes other than the spread of the 
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malware infection directly, and thus are not the target of 

detection in this study. 

D. REDUCTION OF FALSE-POSITIVE ALERTS 

As mentioned in Section III-C, the primary cause of 

false-positive alerts (#FPs) issued by Dark-TRACER is 

synchronized scanning by organizations for investigative 

purposes. Organizations such as Shodan and Censys, 

which deploy various cyberspace intelligence information as 

search engines, regularly scan the entire Internet space at a 

high frequency. Because such Internet-wide scans are fast and 

large-scale, they are observed in our darknet sensor networks 

and are represented as synchronized spatiotemporal patterns. 

Consequently, Dark-TRACER achieved a low number of 

FNs, whereas the number of FPs from investigative scanners 

is very high. 

We believe that if Dark-TRACER can distinguish between 

alerts caused by investigative scanners and alerts caused by 

malware activities in a secondary manner, after detecting 

anomalous synchronous spatiotemporal features without 

missing them, the inefficient situation wherein there are 

many FPs can be significantly improved. In this study, 

to temporarily solve this challenge, we applied a simple rule 

that excluded alerts when a large number, or a sequential 

number, of TCP ports were seen simultaneously from the 

same source hosts in the alerts. In the first experiment 

described in Section III, we found that Dark-NMF halved 

the number of FPs while maintaining a high number of 

TPs, whereas Dark-NTD did not. In the second experiment 

in Section IV, by applying our simple rule, we were able 

to reduce the number of unique ports from 64,103 to 5,271 

for the entire period alerted by Dark-TRACER. In this 

way, we have demonstrated the feasibility of significantly 

improving malware detection by secondarily examining 

alerts. In future work, we would like to develop a model for 

classifying or clustering scanners for investigative purposes 

and automatically create a blacklist so that we can eliminate 

alerts caused by investigative scanners with better accuracy 

than the simple rule used in the present study. 

 
E. TOWARD THE PRACTICAL OPERATION OF 

DARK-TRACER 

Each of the three independent proposed modules has its own 

strengths and weaknesses, and they complement each other 

through their collaboration into a single framework Dark- 

TRACER. From the two experiments presented in this paper, 

it was found that Dark-TRACER can achieve a 100% recall 

rate in the detection accuracy of malware activities and can 

also accomplish early detection. In this section, we discuss 

how Dark-TRACER can be operated in a practical manner. 

First, we consider each module separately. Dark-GLASSO 
has a small number of FNs, but because there are few FPs, 

the precision rate #TPs / (#TPs+#FPs) is high. When it 

is not possible to spend much time on the analysis of the 

detection results, or when the analysis of global malware 

activities is sufficient, it is practical to employ only the 
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detection results of Dark-GLASSO. Next, Dark-NMF and 

Dark-NTD, which use nonnegative tensor decomposition 

methods, are beneficial for detecting local malware 

activities because they can detect many FPs while 

incurring almost no FNs at an early stage. In particular, 

Dark-NMF is effective in detecting anomalous 

synchronization because it does not require 

preprocessing, has a very low computational cost, and 

shows good detection accuracy, even for darknet sensors 

with small observation scales. In contrast, Dark-NTD has 

a very high potential for detecting small-scale threats that 

are typically considered difficult to detect with other 

modules and is useful for capturing fairly localized 

events. As described above, each module has different 

characteristics and can be utilized according to nature 

of the precise situation, or all modules can be fully 

leveraged into an integrated framework as in Dark-

TRACER, taking advantage of their complementary 

relationship. 

Finally, we discuss a secondary analysis method for 

the detection results of Dark-TRACER. The alerts 

issued by Dark-TRACER contain information on IP 

addresses, targeted ports, and the timestamps of the hosts 

that are identified as abnormal. However, this 

information alone is often not enough to accurately 

determine malware activity. As mentioned in Section III-

A, some malware activities, such as Mirai and Hajime, 

are known to have fingerprints in their initial scan packets. 

In large-scale scans such as malware and scanners which 

operate for investigative purposes, packet headers are often 

designed to have fingerprints in order to scan faster [44], 

[45]. Previous research has also reported that scanners use 

fingerprints to distinguish their scan results from 

backscatters [46]. 

The question arises as to what specific information 
should be checked. The following steps are considered 

useful for secondary analysis of Dark-TRACER alerts: 
1) Computing the statistics of packet headers of detected 

alerts and find characteristic header information 

(including known fingerprints such as Mirai and 

Hajime). 

2) Checking whether honeypots in an interactive 

observa- tion network have observed any 

communication related to the detected alerts, and if 

so, analyzing what type of communication occurred 

interactively. 

3) Collating and analyzing the presence of 

information related to the detected alert in third-

party threat intelligence information (e.g., CVEs, 

vulnerabilities, and reports). 

This is the actual workflow of the security operations 

center at NICTER. NICTER operations experts are 

expected to ana- lyze the aforedescribed collation process 

in approximately 15 min per port of an alert. However, this 

does not necessarily imply that the causes and details of all 

events can be clarified. In order to increase the number of 

events that can be clarified as much as possible, it is 

necessary to collate more abundant information. In the 

future, we intend to extend Dark-TRACER by considering a 

wide range of applications, such as a mechanism to reduce 

false positives, improve both recall 
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FIGURE 10. Total annual number of observed 
packets per IP address on 
NICTER. 
 

 
and precision, and automatically associate threat 

intelligence from third parties [47]. 

 

VI. RELATED WORK 

We describe related work on how darknets are 

leveraged in measurement analysis and malware 

activity detection. We also provide related studies and 

directions for identi- fying investigative scanners on 

darknet traffic, which will inevitably become 

necessary in the future. 

 

A. DARKNET MEASUREMENT ANALYSIS 

The darknet has attracted extensive attention in the 

field of network security, and many researchers are 

actively engaged in research on its development, 

analysis, and visualiza- tion [55]. Previous research 

[2], [56]–[58] has discussed the fundamentals of 

various darknet configurations, deployment 

techniques, and sensor placement techniques, and 

clarified the effectiveness of darknets. In addition, 

profiling, filtering, and classification have been 

intensively studied for the measurement of darknets. 

In the rest of this subsection, we present related 

work on IoT malware analysis and general darknet 

measurement analysis. A summary of the related 

studies is shown in Table 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 shows that the amount of observed traffic in 

NICTER’s darknet observation network with a total of 

300,000 IP addresses has increased rapidly over the past 

few years. The main reason for this is the IoT malware 

‘‘Mirai’’, which appeared in 2016 [22]. In contrast to 

conventional botnets, IoT malware scans multiple ports 

in parallel to form a large-scale botnet that can spread 

the infection faster [48]. Moreover, IoT malware variants 

behave competitively with each other and are repeatedly 

destroyed and reinfected over a short period [23]. The 

emergence of such diverse and sophisticated IoT 

malware further complicates cyber threats and makes it 

difficult to examine the actual current state of malware 

strategies. Therefore, it is essential to have a mechanism 

to investigate IoT botnets while they are still persistent 

and to rapidly and precisely detect potential threats. 
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Apart from malware activity detection, which is 

discussed in the next subsection, the following studies 

were conducted in other areas of darknet measurement 

analysis. Dainotti et al. contributed to a census-like 

analysis of how the IP address space is used by 

developing malware and evaluating methods to remove 

spoofed traffic from darknets and live net- works [49]. 

Durumeric et al. analyzed a large-scale darknet to 

investigate Internet-wide scanning activities and identify 

patterns of extensive horizontal scanning operations [50]. 

Fachkha et al. devised an inference and characterization 

module to identify and analyze the probing activities of 

cyber- physical systems (CPS) by extracting various 

features from large amounts of darknet data and 

performing correlational analyses [51]. Jonker et al. 

introduced a framework to protect against DoS attacks 

based on various data sources, including darknet traffic 

data [52]. They found that one-third of all /24 networks on 

the Internet had suffered at least one DoS attack in the 

past two years. Shaikh et al. identified unsolicited IoT 

devices by collecting IP header information from darknet 

traffic data and classifying them using several machine 

learning algorithms [53]. Akiyoshi et al. proposed a 

method to detect emerging scanning activities and their 

scale by analyzing the correlation between traffic in 

honeypots and darknets [54]. Most of the measurement 

analysis studies using darknets have been applied to 

understand the general trend of malicious 

communications observed in darknets. Thus, for detailed 

analysis, many studies use not only darknet data but also 

trap-based monitoring systems such as honeypots. 

 
B. MALWARE ACTIVITY DETECTION ON DARKNETS 

A summary of the related works referred to in this 

subsection is provided in Table 9. According to a survey 

paper on darknets [55], the technique of filtering 

misconfigured traffic has not yet been fully explored and 

is an ongoing challenge that deserves more attention from 

the research community. We consider that our method 

can filter out misconfigured traffic by detecting 

anomalies in the synchronization of spatiotemporal 

patterns. Furthermore, our method is unique in that it can 

detect global cyber threats/malware activities in real time 

in a uniform format by focusing on the syn- chronization 

of anomalous spatiotemporal patterns among many 

indiscriminate suspicious scans that reach large-scale 

darknets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, we present some prior research that had a similar 

scope to our problem and used darknet traffic but did 

not focus on synchronization. There are several methods 

to detect anomalies by detecting change points in darknet 

traffic, such as ChangeFinder that was introduced as a 

comparison method in a previous study [10], [59]–[61]. 

Ahmedet al. proposed a sliding window-based adaptive 

cumulative sum (CUSUM) algorithm, which is a sequential 

analysis method for detecting drastic changes in darknet 

traffic [59]. Inoue et al. [60] employed the ChangeFinder 

algorithm [10] to detect sudden change points in darknet 

traffic with a low computational cost. Ban et al. proposed 

an abrupt-change detection algorithm that can detect botnet 
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TABLE 8. Summary of related works on darknet measurement analysis including IoT malware (Mirai). 

 
    

 
 

 
 

 

 

 

 

 

 

 
 

  
 

 
 

  

 
 

 

 

 

 
 

  
 

 
 

  

 

 
 

 
 

 

 
 

  

 

 
 

 
 

 

 
 

  

 

TABLE 9. Summary of related works on darknet detecting malware activity from darknet traffic. 

 
     

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

 
 

 
 

  

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

probe campaigns with a high detection rate by searching 

for temporal coincidences in botnet activities observed on 

the darknet [61]. The aforementioned change detection 

methods all share the same drawback—they cannot achieve 

high accuracy without focusing on specific protocol ports 

because they detect change points without distinguishing 

between many sources of noisy communications, such as 

misconfigured traffic. As shown in the experimental results 
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of ChangeFinder herein, the accuracy was low when 

the algorithm was applied to the entire traffic without 

focusing on a specific port. In addition, applying the 

change detection method to a specific port would result in 

many alerts, which would require considerable 

computational and analysis costs. Next, we review recent 

related works on the analysis of malware activity using 

darknet data (mainly clustering). As mentioned in the 

previous subsection on darknet mea- 

 

surement analysis, most of the communications reaching 

the darknet since 2016 have seen a considerable increase 

in traffic volume due to IoT malware. Therefore, many 

clustering methods targeting the analysis of IoT malware 

activities have been studied in recent years. Pour et al. 

learned to classify compromised IoT devices and non-IoT 

devices using convolutional neural networks [62]. Using 

the classification training results, they extracted features 

embedded in unsolicited scan flows and deployed hierar- 

chical agglomerative clustering. As a result, the authors 

uncovered 440,000 compromised IoT devices and 350 IoT 

botnets. Torabi et al. leveraged the Shodan IoT search 

engine and darknet traffic data to infer compromised IoT 

devices and to characterize and cluster the generated scanning 

campaigns [63]. The authors discovered newly targeted 

ports and emerging IoT malware/botnets, highlighting their 

persistence and evolutionary process. Cohen et al. proposed 

a method for sequential clustering of aggressive hosts having 

similar intentions from scalable darknet traffic by embedding 

a port sequence for each source host [24]. By tracking the 

clusters, they detected recurrent or new attacks and found 

several new campaigns of malicious port sequences. 

Such clustering methods are considered to be able to 

classify malware activities, investigative scans, and noisy 

communications (e.g., misconfigured traffic) to some extent. 

However, although the clustering methods can distinguish 

distinctive hosts or packets as a group, they cannot detect 

anomalies and thus cannot identify which clusters are 

anomalous or distinctive. Therefore, it is necessary to 

prioritize the clusters to be analyzed based on some criteria. 

In contrast, as Dark-TRACER issues alerts in real time upon 

anomaly detection, it is easy to know what to analyze first, 

thereby making the framework highly practical. In addition, 

clustering methods are not suitable for the early detection of 

unknown or small-scale malware activities because clusters 

are not formed unless the amount of observed features of 

malware activities is large. As shown in the experimental 

results herein, Dark-TRACER has good potential to detect 

small-scale malware activities in an early stage. 

BotSniffer [1] and BotMiner [64] proposed a framework 

for detecting C&C traffic and malicious activities based on 

the spatiotemporal correlation method. However, the scope of 

their problem setting was different from that of ours, because 

BotSniffer and BotMiner only target specific protocols of 

actual network traffic and therefore cannot detect global 

cyber threats and malware activities in the entire Internet 

space. To the best of our knowledge, there is no related 

work that focuses on synchronization in the same scope as the 

present study. As described in Table 9, prior papers [6] and 

[7] were published as prototypes of Dark-GLASSO, prior 

paper [8] was published as a prototype of Dark-NMF, and, 

finally, prior paper [9] was published as a prototype of 

Dark-NTD. However, as the previous methods have been 

considered independently, their relationship has remained 

unclear. In this study, we integrated and evaluated the three 

previous methods as Dark-TRACER and clarified that they 
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complement each other. In addition, although the 

previous methods can detect malware in real time, the 

feasibility of early detection of malware activity was not 

evaluated; therefore, in this study, we evaluated the early 

detection performance and the analysis cost. 

We also present several other related works that 

utilized darknet traffic to identify and detect malicious 

communica- tions, based on the reports of a recent survey 

paper [65]. Kumar et al. proposed a model that learns 

from darknet data and benign traffic data to test whether it 

can classify malicious communications [66]. However, the 

model only classifies whether the traffic flow is malicious 

or benign, and because it learns all at once, it does not 

specifically identify what kind of maliciousness it has 

classified. Bou-Harb et al. investigated orchestrated 

probing campaigns by considering a clustering method 

for time-series traffic data [67]. However, this method 

does not detect anomalies and does not distinguish noisy 

communications. Ali et al. classified DDoS attacks using 

Resource Allocating Network with Locality Sensitive 

Hashing) (RAN-LSH), which employs LSH to select data 

for training and achieves fast online learning by training 

only selected data [68]. However, because this method 

only analyzes backscatter traffic and targets to classify 

DDoS attacks, it is not suitable for detecting and 

classifying malware activities, which do not involve 

backscatter. 

 
C. TOWARDS THE IDENTIFICATION OF 

INVESTIGATIVE SCANNERS 

We conclude this section by sharing related works that 

have distinguished between investigative scanners, which 

is an issue that must be considered in future 

studies. A summary of the related works mentioned in 

this sub- section is presented in Table 10. Many massive 

Internet- wide scanners are observed on the darknet, 

including both public scanning activities and malware 

activities. Recently, high-performance scanning tools 

such as ZMap [44] and Masscan [69] have been 

deployed, and Mazel et al. profiled the utilization of such 

tools [45]. The results revealed that many entities openly 

engage in scanning activities on a large scale and on a 

constant basis. Because such harmless and large-scale 

investigative scanners perform activities with relatively 

synchronized spatiotemporal patterns, many of these 

scanners were incorrectly detected in the results of this 

study. Therefore, we must consider how to distinguish 

such harmless investigative scanners from malware 

activities. 

As mentioned in the previous subsection, DANTE [24] 

embeds port sequences of darknet traffic by source host 

in a given time frame and performs clustering. By 

comparing with the previous time frame and labeling 

the clusters, it is possible to track campaigns and detect 

recurrent or new attacks. In large-scale scans using 

scanning tools, such as ZMap or Masscan, or large-scale 

scans using malware, fingerprints are often attached to 

packet headers to perform faster scans [46]. It has also 

been reported in [46] that fingerprints are provided to 

distinguish scan results from backscatters. In contrast, 

Tanaka et al. proposed 
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TABLE 10. Summary of related works on identifying investigative scanners. 

 

 

a method based on a genetic algorithm to automatically 

identify fingerprints embedded in TCP/IP headers from 

darknet traffic [70]. They succeeded in identifying unknown 

fingerprints from data corresponding to a short period. 

Identifying the fingerprints of investigative scanners and 

tracing the scanners using the DANTE mechanism may 

enable us to distinguish scanners from malware activities. 

Additionally, Wan et al. clarified that the coverage rate 

differs depending on the scan source and that the observed 

hosts differ depending on the region of the observation 

network [71]. Analyzing the darknet observation networks 

in various regions, such as the autonomous system (AS) and 

in various countries, is a way to obtain a more detailed and 

precise understanding of the actual scanning situation. 

 
VII. CONCLUSION 

In this study, we introduced three independent machine 

learning methods to automatically estimate the synchro- 

nization of the spatiotemporal patterns of darknet traffic 

in real time and to detect anomalies. Those three methods 

are: Dark-GLASSO, Dark-NMF, and Dark-NTD. We also 

proposed Dark-TRACER, which integrates all three methods 

into a single framework. We found that Dark-TRACER 

was able to complement the weaknesses of each module, 

achieving a 100% recall rate and detecting all malware 

activities in the experiment. It detected the malware on 

average 153.6 days earlier than the time when the threats 

were revealed to the public by reputable third-party security 

research organizations. In addition, we found that two 

analysts could perform the daily operations necessary to 

detect these threats in approximately 7.3 h. 

Currently, our most serious challenge is the large number 

of false positives. In this study, we confirmed that even 

a simple rule-based approach can effectively reduce the 

number of false-positive alerts. As described in Sections V- 

D and VI-C, our future work is to reduce the number of 

false positives by identifying the fingerprints of investigative 

scanners and building a model to track them. By reducing the 

number of false positives, the analysis cost can be lowered. 

In addition, we intend to automate the secondary collision 

analysis mentioned in Section V-E to elucidate the causes 

and details of the alerts detected by Dark-TRACER. Finally, 

we plan to deploy Dark-TRACER in the real world and detect 

threats and malware activities in real-time to aid rapid 

response. 
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